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Abstract
Multi-modal learning (MML) is frequently hin-
dered by modality imbalance, leading to subopti-
mal performance in real-world applications. To ad-
dress this issue, existing approaches primarily fo-
cus on rebalancing MML from the perspective of
optimization or architecture design. However, al-
most all existing methods ignore the impact of sam-
ple sequences, i.e., an inappropriate training order
tends to trigger learning bias in the model, further
exacerbating modality imbalance. In this paper, we
propose Balance-aware Sequence Sampling (BSS)
to enhance the robustness of MML. Specifically, we
first define a multi-perspective measurer to evalu-
ate the balance degree of each sample in terms of
correlation and information criteria. Via this eval-
uation, we employ a heuristic scheduler based on
curriculum learning (CL) that incrementally pro-
vides training subsets, progressing from balanced
to imbalanced samples to alleviate the imbalance.
Moreover, we propose a learning-based probabilis-
tic sampling method to dynamically update the
training sequence in a more fine-grained manner,
further improving MML performance. Extensive
experiments on widely used datasets demonstrate
the superiority of our method compared with state-
of-the-art (SOTA) baselines. The code is available
at https://github.com/njustkmg/IJCAI25-BSS.

1 Introduction
Multi-modal learning has emerged as a prominent research
area in artificial intelligence across various scenarios [Yin et
al., 2021; Xu et al., 2023; Yang et al., 2021], including speech
recognition [Hu et al., 2023], information retrieval [Yang et
al., 2024b], and recommender systems [Ye et al., 2025]. By
integrating information from diverse sensors, MML has be-
come a driving force in improving performance across these
applications. Despite these promising outcomes, MML faces
a significant challenge: modality imbalance. Specifically, the
inherent heterogeneity of data endows each modality with
distinct properties, such as convergence speed [Peng et al.,
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Figure 1: A motivating example of sequence sampling: (a1-a3). Il-
lustration of different training sequences. (b). Comparison of dif-
ferent criteria under the CL setting. The results show that CL out-
performs vanilla training with random sequences, while anti-CL is
inferior to it. (c). Accuracy curves of different training sequences
on the Twitter2015 dataset.

2022]. As a result, the learning process tends to be dominated
by the stronger modality (i.e., the one that converges faster)
during joint training, which can lead to insufficient learning
of other modalities. In extreme cases, this imbalance may
even cause the multi-modal model to perform worse than its
best unimodal counterpart [Wang et al., 2020].

Recently, many impressive studies have been proposed to
address the modality imbalance problem from various per-
spectives [Du et al., 2021; Peng et al., 2022; Li et al., 2023;
Yang et al., 2024a; Yang et al., 2025]. Considering the in-
herent modal differences, a straightforward idea is to man-
ually control the optimization process between strong and
weak modalities to achieve rebalancing, such as learning rate
adjustment [Yao and Mihalcea, 2022] and gradient modula-
tion [Fan et al., 2023; Peng et al., 2022]. Other approaches
attempt to facilitate multi-modal learning through neural ar-
chitecture design [Du et al., 2021; Xiao et al., 2020]. Al-
though these optimization- and architecture-based methods
have shown promising results, they generally overlook an im-
portant aspect: MML can be highly sensitive to the sequence

https://github.com/njustkmg/IJCAI25-BSS


in which training samples are presented at different stages.
This motivates us to investigate the role of sample sequences
in addressing modality imbalance.

Since the standard training paradigm is characterized by
random data shuffling, this process inevitably introduces im-
balanced samples into the early training stages (Figure 1
(a1)), which may further exacerbate modality imbalance and
ultimately degrade overall performance. To support our
viewpoint, we conduct a toy experiment on the Twitter2015
dataset to investigate the relationship between different train-
ing sequences and MML performance. Inspired by curricu-
lum learning (CL) [Wang et al., 2022; Soviany et al., 2022],
we first evaluate the balance degree of sample pairs based on
both correlation criteria (e.g., prediction similarity) and in-
formation criteria (e.g., training loss), and then rank them
to construct new training sequences (Figure 1 (a2)). The
comparison results in Figure 1 (b) reveal an interesting phe-
nomenon: CL effectively boosts MML performance, while
anti-CL (i.e., learning from imbalanced to balanced samples)
leads to performance degradation across all criteria. This ex-
periment suggests that introducing balanced samples in the
early training stages can guide the model toward a more sta-
ble and robust optimization path, thereby enhancing overall
performance.

Based on our findings, in this paper, we attempt to address
the modality imbalance by adjusting the sample sequences, a
training paradigm that provides appropriate training samples
to the model at different stages. Concretely, we first design
a multi-perspective measurer from both correlation and infor-
mation criteria to evaluate the balance degree of each sample.
Via sample evaluation, we propose a heuristic scheduler that
progressively constructs training sequences in a balanced-to-
imbalanced manner. Moreover, considering that the heuristic
scheduler is relatively coarse and may neglect feedback from
the current model, we propose a learning-based scheduler
that dynamically reconstructs training sequences by assign-
ing sampling probabilities to each data point (Figure 1 (a3)),
further enhancing MML performance as shown in Figure 1
(c). To sum up, our contributions are outlined as follows:

• We highlight the critical role of training sequences in
addressing modality imbalance, and show that well-
structured sequences can significantly improve MML
performance.

• We define a multi-perspective measurer to quantify the
balance degree of each sample. Based on the resulting
balance scores, we then propose both a heuristic and a
learning-based sampling method to adjust the training
sequences.

• Extensive experiments demonstrate that our proposed
method outperforms existing baselines and achieves
SOTA performance across widely used datasets.

2 Related Work
2.1 Imbalanced Multi-Modal Learning
Recent research [Peng et al., 2022; Huang et al., 2022] has
shown that many multi-modal models fail to outperform the
best unimodal counterpart. This phenomenon is attributed

to modality imbalance [Fan et al., 2024; Wei et al., 2024b],
where each modality cannot be fully learned due to inhibition
between them. Considering the existence of both strong and
weak modalities, several representative [Wang et al., 2020;
Fan et al., 2023; Zong et al., 2024] methods focus on balanc-
ing the optimization of individual modalities. In particular,
OGM [Peng et al., 2022] introduces an on-the-fly gradient
modulation technique, which adaptively adjusts the optimiza-
tion process for each modality by monitoring the discrepancy
in their contributions to the learning objective. PMR [Fan et
al., 2023] uses prototypes to control the update direction for
improved unimodal performance. Other studies [Du et al.,
2021; Wu et al., 2022] attempt to boost MML performance by
introducing supplementary modules. For instance, UMT [Du
et al., 2021] trains the multi-modal model with knowledge
distillation [Gou et al., 2021] from well-learned teacher en-
coders to obtain richer unimodal representations. However,
these methods increase model complexity and training costs.
In this paper, from the perspective of sample sequences, we
address modality imbalance by guiding the model to pro-
gressively learn training samples in a balanced-to-imbalanced
manner, without the need for additional modules.

2.2 Sequence-oriented Multi-modal Learning
Sequence-oriented MML is crucial in machine learning, en-
abling models to train on a meaningful subset derived from
the original dataset distribution. These strategies are primar-
ily applied in two areas: curriculum learning (CL) [Soviany
et al., 2022] and noisy label learning (NLL) [Patel and Sastry,
2023]. CL is a training paradigm that progresses from easier
samples to harder ones. By guiding the model toward a better
parameter space, CL has been widely adopted across various
fields, including large language models [Wang et al., 2024],
action recognition [Tong et al., 2023], and reinforcement
learning [Narvekar et al., 2020]. A typical curriculum sys-
tem consists of two main components: a difficulty measurer
to evaluate the learning difficulty of samples and a scheduler
to manage the assignment of training subsets. On the other
hand, sequence-oriented MML in NLL focuses on selecting
clean samples from a noisy training set for model learning.
Commonly used criteria for identifying noisy labels, such
as training loss [Wei et al., 2020], Jensen-Shannon diver-
gence [Xu et al., 2025], and representation similarity [Or-
tego et al., 2021], facilitate reliable data selection and ulti-
mately enhance model robustness. Inspired by the core idea
of sequence-oriented MML, we prioritize balanced samples
to address modality imbalance. This strategy helps rebalance
the training process, enabling our method to learn robust fea-
ture representations while avoiding early-stage optimization
dilemmas.

3 Methodology
In this section, we present our proposed method in detail.
The overall architecture is shown in Figure 2, which con-
sists of two main components: a multi-modal training frame-
work for learning representations, and a Balance-aware Se-
quence Sampling (BSS) module for rebalancing MML via a
multi-perspective measurer and two optional schedulers (one
heuristic and the other learning-based).
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Figure 2: Illustration of our method: (a). Multi-modal learning framework. (b). Sequence sampling with a heuristic scheduler. (c). Sequence
sampling with a learning-based scheduler.

3.1 Preliminary
Without loss of generality, we consider a multi-modal sample
with u and v modalities. Formally, let D = {X,Y } denote
the dataset, where X = {x(u)

i ,x
(v)
i }ni=1 represents n training

samples and Y = {yi |yi ∈ {0, 1}c}ni=1 is the correspond-
ing category labels with a total of c categories. MML aims to
train a model to predict the category label of a given multi-
modal sample.

For the MML prediction task, we typically employ deep
neural networks to learn feature embeddings of each modal-
ity from the original space. We use f (j)(·) as the feature ex-
tractor for j-th modality, j ∈ {u, v}. Given a sample x

(j)
i ,

the feature extraction can be expressed as:

e
(j)
i = f (j)(x

(j)
i ; θ(j)), (1)

where e(j)i ∈ Rd denotes the d-dimension feature embedding
of x(j)

i , the θ(j) denotes the learnable parameters of j-th en-
coder. After extracting feature embeddings for all modalities,
we adopt a fusion function g(·) to fuse them, followed by
a classifier (e.g., a fully connected layer) to map the feature
embedding to Rc. This procedure can be formulated as:

ei = g(e
(u)
i , e

(v)
i ), ŷi = softmax(Wei + b). (2)

Here, W ∈ Rc×D, b ∈ Rc denote the weights and bias of
the classifier, respectively, and D denotes the dimension of
ei. Then, the objective function of multi-modal learning can
be formulated as:

ℓcemulti(X,Y ) = − 1

n

n∑
i=1

y⊤
i log ŷi. (3)

Considering that MML can benefit from the supervision of
unimodal predictions [Zou et al., 2023], we jointly optimize

both multi-modal and unimodal objectives. Therefore, the
final objective function can be reformulated as:

ℓtotal = (1− α)ℓcemulti(X,Y ) + α
∑

j∈{u,v}

ℓceuni(X
(j),Y ),

(4)

where α denotes the weighted parameter between the losses.

3.2 Multi-perspective Measurer
To construct well-structured training sequences that address
modality imbalance, we next introduce how to measure the
balance degree of a multi-modal sample from the perspec-
tives of correlation and information criteria.
Correlation Criterion: Different modalities exhibit inherent
cross-modal correlation, as they describe the same concept
via diverse representations, capturing complementary infor-
mation. Although cross-modal correlation can be measured
from various aspects, we focus on the most commonly used
and critical criterion, i.e., prediction similarity. The reason
is that prediction similarity directly measures output consis-
tency. Formally, given a sample xi = {x(u)

i ,x
(v)
i }, the pre-

diction similarity is defined as:

sim(x
(u)
i ,x

(v)
i ) =

[ŷ
(u)
i ]⊤ŷ

(v)
i

∥ŷ(u)
i ∥2∥ŷ(v)

i ∥2
. (5)

Here, ∥ · ∥2 denotes L2 norm of the unimodal predictions.
Information Criterion: While prediction similarity reflects
the balance between modalities, it does not verify whether the
predictions of each modality are correct. In other words, high
prediction similarity may still occur even when all modalities
produce incorrect predictions. Therefore, we further intro-
duce label-related training loss as an intuitive metric to eval-
uate the learning difficulty of each sample.



Balance Score: We denote the sets of prediction simi-
larity and training loss computed over all n training sam-
ples as S = [sim(x

(u)
1 ,x

(v)
1 ), . . . , sim(x

(u)
n ,x

(v)
n )] and

L = [ℓtotal(x
(u)
1 ,x

(v)
1 ,y1), . . . , ℓtotal(x

(u)
n ,x

(v)
n ,yn)], re-

spectively. Hence, the balance score of sample xi =

{x(u)
i ,x

(v)
i } can be formulated as the combination of corre-

lation criterion and information criterion:

s(xi) =
sim(x

(u)
i ,x

(v)
i )− min(S)

max(S)− min(S)

− ℓtotal(x
(u)
i ,x

(v)
i ,yi)− min(L)

max(L)− min(L)
.

(6)

This normalization ensures that both terms lie on a compara-
ble scale. A higher score s(xi) ∈ [−1, 1] indicates a better
balance degree.

3.3 Training Scheduler
After evaluating the balance score of each sample, we pro-
ceed to control the presentation order of training data from
balanced to imbalanced samples, i.e., the sample sequence
for each training epoch.

Similar to human education, if teachers impart knowledge
all at once, students may become overwhelmed and fail to
learn effectively. On the other hand, if teachers focus too
much on basic knowledge, students may lose motivation. In
the following, we introduce a coarse but efficient heuristic
scheduler and a more refined, effective learning-based sched-
uler for constructing sample sequences.
Heuristic Scheduler: Inspired by curriculum learning [Wang
et al., 2022; Soviany et al., 2022], we rank the training sam-
ples from balanced to imbalanced according to the defined
balance score, and then employ a pace function [Hacohen
and Weinshall, 2019] to determine the number of samples
included in the training set at each epoch. In practice, var-
ious pacing functions exist, such as the baby step [Bengio et
al., 2009], linear function [Wang et al., 2022], and root func-
tion [Platanios et al., 2019]. However, the impact of existing
pacing functions on modality imbalance is not the focus of
our work. Here, we adopt a widely used root function λ(t) to
achieve this:

λ(t) = min

(
1,

√
1− λ2

0

Tgrow
· t+ λ2

0

)
, (7)

where Tgrow represents the training epoch when this function
first reaches 1, and λ0 ∈ (0, 1] is the initial proportion of the
training samples. λ(t) maps the training epoch t to an interval
λ ∈ (0, 1], which means λ proportion of the most balanced
samples are available at t-th epoch. This function starts at
λ(0) > 0 and ends at λ(Tgrow) = 1.

From Equation 7, the pace function serves as a threshold
that progressively expands the sampling space during train-
ing. At each epoch t, the current batch data Xbatch is ran-
domly sampled from the top λ proportion of training data in
the entire ranked sequence Xrank:

Xbatch(t) = Sampling ({xi|xi ∈ Xrank, i < ⌊n · λ(t)⌋}) ,
(8)

where n denotes the number of training samples. Thus,
the heuristic scheduler allows the model to focus on bal-
anced samples during the early training stages and gradu-
ally broaden the learning scope by incorporating those im-
balanced ones. Please note that the sample evaluation is per-
formed only once before model training, which means Xrank

is a fixed sequence.
Learning-based Scheduler: Despite the simplicity and ef-
ficiency of the heuristic scheduler in practice, it has one
main limitation: the fixed training sequence is coarse-grained,
which may neglect feedback from the current model and po-
tentially lead to inaccurate sample evaluation. Therefore,
we further propose a learning-based scheduler that flexibly
addresses the above limitation. This scheduler reconstructs
the dynamic sequence by learning a sampling probability for
each data point, considering both the balance of past and cur-
rent samples in a more fine-grained manner.

Specifically, we refer to the balance score s(xi) in Equa-
tion 6 and update it in a certain epoch interval, using E for
short. Subsequently, the k + 1-th balance score can be ex-
pressed as:

ŝk+1(xi) =

{
sk+1(xi), if k = 0,

(1− β)ŝk(xi) + βsk+1(xi), otherwise,
(9)

where k = ⌊t/E⌋, t denotes the t-th epoch, β is an adjust-
ment parameter, and s1 is the balance score obtained before
model training, i.e., the initial evaluation results.

According to the updated balance scores, the learned sam-
pling probability p for each data point xi in the t-th epoch
can be computed using the softmax operation:

p(xi) =
eŝ

k+1(xi)∑n
j=1 e

ŝk+1(xj)
. (10)

Finally, in the t-th epoch, each data point xi is sampled
with probability p(xi) to construct the current batch data
Xbatch, without replacement. This process is formulated as:

Xbatch(t) = Sampling({p(x1), p(x2), . . . , p(xn)}). (11)

Hence, training data with higher sampling probabilities
(i.e., more balanced ones) are preferentially selected for the
mini-batch in each epoch.

Discussion: Our proposed method aims to address the
modality imbalance problem through sequence sampling in
a balanced-to-imbalanced learning manner. Thus, our BSS
can be integrated as a model-independent plugin into most
existing MML approaches.

3.4 Model Inference
After training, the learned model can be applied for predic-
tion during the inference stage. Following [Fan et al., 2024;
Zhang et al., 2024], we adopt a simple weighted combination
of logits output from each modality and their fusion, repre-
sented as ztotal = zmulti +

∑
j∈{u,v} z

(j)
uni. Subsequently,



Algorithm 1: Multi-modal Learning with Balance-
aware Sequence Sampling (BSS).

Input : Training set Xtrain, category labels Y train.
Output: Learned parameters θ of all models.
INIT Initialize parameters θ0, maximum epochs T , training

set for ranking Xrank = ∅, curriculum period Tgrow,
initial proportion λ0, epoch interval E.

/* Calculate the balance score via measurer. */
for each sample xi in Xtrain do

Obtain balance score s(xi) based on Equation 6.
Add xi to Xrank in descending order of s(xi).

end
/* Train model using sample sequences from scheduler. */
for t = 0 to T − 1 do

if scheduler == ‘heuristic’ then
Calculate the proportion of the training samples
λ(t) with Equation 7.

Obtain current batch data Xbatch from Xrank with
Equation 8.

else if scheduler == ‘learning-based’ then
Update s(xi) every E epochs with Equation 9.
Assign sampling probability p(xi) based on s(xi)

with Equation 10.
Obtain current batch data Xbatch with Equation 11.

end
Train model with Xbatch and update parameters θ.
Update t = t+ 1.

end

the predicted category ŷ for a given unseen multi-modal sam-
ple can be denoted as:

ŷ = argmax
i

ez
i
total∑c

j=1 e
zj
total

. (12)

4 Experiments
4.1 Experimental Setup
Datasets: We validate our proposed method on six widely
used datasets, including CREMA-D [Cao et al., 2014],
Kinetics-Sounds [Arandjelovic and Zisserman, 2017],
VGGSound [Chen et al., 2020], Twitter2015 [Yu and
Jiang, 2019], Sarcasm [Cai et al., 2019], and NVGes-
ture [Molchanov et al., 2016]. Among them, CREMA-D,
Kinetics-Sounds, and VGGSound contain both audio and
video modalities. CREMA-D includes 7,442 video clips
across six emotional categories, with 6,698 clips for training
and 744 for testing. Kinetics-Sounds is categorized into
31 distinct actions, split into 15,000 for training, 1,900
for validation, and 1,900 for testing. VGGSound provides
168,618 videos for training and validation, along with 13,954
videos for testing. Moreover, Twitter2015 and Sarcasm
datasets involve both image and text modalities. Twitter2015
comprises 5,338 text-image pairs, divided into 3,179 for
training, 1,122 for validation, and 1,037 for testing. Sarcasm
contains 24,635 text-image pairs, allocated as 19,816 for
training, 2,410 for validation, and 2,409 for testing. Lastly,
NVGesture features three modalities, i.e., RGB, optical flow
(OF), and Depth, with 1,050 samples for training and 482

samples for testing.

Baselines and Evaluation Metrics: We conduct a com-
prehensive comparison of BSS with two types of base-
lines: vanilla fusion methods and multi-modal rebalance ap-
proaches. The former includes Concat, Affine [Perez et
al., 2018], Channel, ML-LSTM [Nie et al., 2021], Sum,
Weight, and ETMC [Han et al., 2023]. The latter com-
prises MSES [Fujimori et al., 2019], OGR-GB [Wang et al.,
2020], DOMFN [Yang et al., 2022], OGM [Peng et al., 2022],
MSLR [Yao and Mihalcea, 2022], AGM [Li et al., 2023],
PMR [Fan et al., 2023], ReconBoost [Hua et al., 2024],
MMPareto [Wei and Hu, 2024], SMV [Wei et al., 2024a],
MLA [Zhang et al., 2024], and AMSS [Yang et al., 2025].

Following [Peng et al., 2022; Hua et al., 2024], we utilize
accuracy (ACC), mean average precision (MAP), and Macro
F1-score (Mac-F1) as evaluation metrics. ACC measures the
ratio of correct predictions to total predictions. MAP reflects
the average precision across all samples, while Mac-F1
computes the average of F1 scores across all categories.

Implementation Details: Following [Fan et al., 2023], for
audio-video datasets, we use ResNet18 [He et al., 2016]
as the backbone to encode each modality. For text-image
datasets, we employ ResNet50 for images and BERT [De-
vlin et al., 2019] for text processing. For the trimodal dataset
NVGesture, we follow the setup of [Wu et al., 2022] and
adopt the I3D [Carreira and Zisserman, 2017] as the unimodal
backbone. To ensure fairness, all methods use the same back-
bone during training. The optimizer for audio-video datasets
is stochastic gradient descent (SGD) with a momentum of 0.9
and weight decay of 10−4. The initial learning rate is set to
10−2 and is reduced by a factor of 10 when the loss satu-
rates. The batch size is set to 64 for CREMA-D and Kinetics-
Sounds, 16 for VGGSound, and 2 for NVGesture. For text-
image datasets, we employ the Adam optimizer starting with
a learning rate of 10−5, with a batch size of 64. Further-
more, the hyperparameters α and β are set to 0.2 and 0.6, re-
spectively. For the training scheduler, the curriculum period
Tgrow and the initial proportion λ0 are configured as 40 and
0.1 under the heuristic setting, while the epoch interval E is
configured as 5 under the learning-based setting. All models
are trained on an NVIDIA GeForce RTX 3090 GPU.

4.2 Comparison with SOTA MML Baselines
We conduct comprehensive comparisons to assess the superi-
ority of our proposed method in addressing the imbalanced
MML problem. The classification performance across all
datasets is reported in Table 1 and Table 2, where “BSS-H”
and “BSS-L” denote the proposed method with the heuristic
scheduler and learning-based scheduler, respectively. Please
note that “-” in Table 1 denotes that the corresponding meth-
ods are not applicable to the respective datasets.
Results on Bimodal Dataset: Referring to the first four
datasets in Table 1, we derive the following key observa-
tions: (1). Unimodal performance may outperform multi-
modal joint training. For instance, the text-modal perfor-
mance on the Twitter2015 dataset is obviously better than
most vanilla fusion methods, indicating an inhibitory rela-



Method CREMA-D Kinetics-Sounds Twitter2015 Sarcasm NVGesture

ACC (%) MAP (%) ACC (%) MAP (%) ACC (%) F1 (%) ACC (%) F1 (%) ACC (%) F1 (%)

Audio/Text/RGB 63.17 68.61 54.12 56.69 73.67 68.49 81.36 80.65 78.22 78.33
Video/Image/OF 45.83 58.79 55.62 58.37 58.63 43.33 71.81 70.73 78.63 78.65
Depth - - - - - - - - 81.54 81.83

Concat 63.31 68.31 64.55 71.31 70.11 63.86 82.86 82.43 81.33 81.47
Affine 66.26 71.93 64.24 69.31 72.03 59.92 82.47 81.88 82.78 82.81
Channel 66.13 71.75 63.51 68.66 - - - - 81.54 81.57
ML-LSTM 62.94 64.73 63.84 69.02 70.68 65.64 82.05 70.73 83.20 83.30
Sum 63.44 69.08 64.97 71.03 73.12 66.61 82.94 82.47 82.99 83.05
Weight 66.53 73.26 65.33 71.33 72.42 65.16 82.65 82.19 83.42 83.57
ETMC 65.86 71.34 65.67 71.19 73.96 67.39 83.69 83.23 83.61 83.69

MSES 61.56 68.83 64.71 70.63 71.84 66.55 84.18 83.60 81.12 81.47
OGR-GB 64.65 84.54 67.10 71.39 74.35 68.69 83.35 82.71 82.99 83.05
DOMFN 67.34 85.72 66.25 72.44 74.45 68.57 83.56 82.62 - -
OGM 66.94 71.73 66.06 71.44 74.92 68.74 83.23 82.66 - -
MSLR 65.46 71.38 65.91 71.96 72.52 64.39 84.23 83.69 82.86 82.92
AGM 67.07 73.58 66.02 72.52 74.83 69.11 84.02 83.44 82.78 82.82
PMR 66.59 70.30 66.56 71.93 74.25 68.60 83.60 82.49 - -
ReconBoost 74.84 81.24 70.85 74.24 74.42 68.34 84.37 83.17 84.13 86.32
MMPareto 74.87 85.35 70.00 78.50 73.58 67.29 83.48 82.48 83.82 84.24
SMV 78.72 84.17 69.00 74.26 74.28 68.17 84.18 83.68 83.52 83.41
MLA 79.43 85.72 70.04 74.13 73.52 67.13 84.26 83.48 83.40 83.72
AMSS 70.30 76.14 72.25 79.13 75.12 69.23 84.35 83.77 84.64 84.94

BSS-H 80.78 87.86 72.67 78.61 74.73 68.67 84.41 83.86 85.06 85.15
BSS-L 82.80 88.61 73.95 79.43 75.22 69.51 85.01 84.62 86.72 87.04

Table 1: Comparison with SOTA multi-modal learning methods. The best performances are highlighted in bold, and the second best is
underlined. Higher ACC, MAP, or F1 scores indicate better performance.

tionship between different modalities. (2). Most multi-modal
rebalance approaches demonstrate significant improvements
over vanilla fusion methods. This phenomenon not only un-
derscores the adverse impact of modality imbalance on per-
formance but also validates the effectiveness of the multi-
modal rebalance approach. (3). Compared to all baselines,
including both vanilla fusion methods and multi-modal rebal-
ance approaches, our proposed method achieves the best per-
formance by a large margin across all metrics. It can be ob-
served that BSS-L delivers significant performance improve-
ments on both the CREMA-D and Kinetics-Sounds datasets.
After sequence sampling, our method surpasses the best base-
line (MLA) [Zhang et al., 2024] with gains of 3.37%/2.89%
and 3.91%/5.30% in ACC and MAP metrics, respectively.
Results on Trimodal Dataset: In addition, we present a
comparison with SOTA baselines on the NVGesture dataset.
As shown in the last dataset of Table 1, unlike multi-modal
rebalance approaches limited to scenarios with only two
modalities (e.g., OGM [Peng et al., 2022] and PMR [Fan et
al., 2023]), our method effectively tackles the challenges in
scenarios involving more than two modalities and achieves
the best performance.

Results on Large-scale Dataset: To further evaluate the gen-
erality of our method, we conduct experiments on the large-
scale VGGSound dataset. Given the size of the dataset, we se-

Method ACC (%) MAP (%)

OGM 48.29 49.78
AGM 47.11 51.98
ReconBoost 50.97 53.87
MMPareto 51.25 54.73
SMV 50.31 53.62
MLA 51.65 54.73

BSS-H 51.61 55.68
BSS-L 52.80 56.61

Table 2: Performances on the VGGSound dataset.

lect a few representative baselines for comparison, including
OGM, AGM [Li et al., 2023], ReconBoost [Hua et al., 2024],
MMPareto [Wei and Hu, 2024], SMV [Wei et al., 2024a], and
MLA. The results in Table 2 consistently demonstrate that our
BSS-L achieves superior performance.

4.3 Ablation Study
We conduct ablation studies to verify the effectiveness of
using different criteria for sample evaluation, namely uni-
modal prediction similarity (PreSim) and training loss (Loss).
Table 3 presents the results under the learning-based set-
ting, which reveal that: (1). Vanilla training may exac-



erbate modality imbalance. For instance, when the video
modality converges, the audio modality remains insufficiently
trained, leading to a significant gap between the two modal-
ities (4.66%/6.41% in ACC/MAP). (2). Both “PreSim”
and “Loss”, when employed, can boost classification perfor-
mance. (3). By integrating “PreSim” and “Loss”, BSS-L
achieves the best performance. This is predictable, as priori-
tizing balanced samples based on correlation and information
criteria helps narrow the gap between modalities, facilitating
both unimodal and multi-modal learning processes.

Criterion ACC (%) / MAP (%)

PreSim Loss Audio Video Multi

✗ ✗ 49.37/51.07 54.03/57.48 70.44/76.62
✗ ✓ 52.11/54.40 54.23/57.91 72.44/79.41
✓ ✗ 52.38/54.32 54.93/58.52 73.25/78.98
✓ ✓ 52.73/54.43 54.74/58.46 73.95/79.43

Table 3: Ablation study on the Kinetics-Sounds dataset under the
learning-based setting.

4.4 Further Analysis

Sensitivity to Hyperparameters: In calibrating our pro-
posed method, we identify two hyperparameters: α in Equa-
tion 4 and β in Equation 9, determining the strength for bal-
ancing classification loss and regulating the balance score, re-
spectively. Figure 3 (a) depicts the performance of different
α. As α increases, the accuracy of our method first increases
and then decreases. This shows that proper unimodal learning
has a promoting effect, but over-considering unimodal opti-
mization may hinder multi-modal interactions. From Figure 3
(b), we can find that the performance is marginally affected
by β, highlighting the insensitivity of our method to hyperpa-
rameters. Despite some fluctuations, our method still demon-
strates excellent effectiveness, i.e., being consistently better
than baseline vanilla MML.
Robustness of the Pre-trained Model: We further explore
the robustness of the large pre-trained model on text-image
datasets. We replace each modality encoder with the corre-
sponding encoder pre-trained by CLIP [Radford et al., 2021]
and fine-tune the model. The results are shown in Figures 3
(c) and (d), where “CLIP+MLA” and “CLIP+Ours” repre-
sent the use of MLA and our approach, respectively. From
the results, we can draw the following observations: (1).
Both “CLIP+MLA” and “CLIP+Ours” outperform CLIP in
all cases. (2). Via sequence sampling, our method achieves
better performance than MLA.
Case Study: We investigate whether our method can effec-
tively distinguish between balanced and imbalanced samples
in a randomly ordered sequence. From the representative
samples in Figure 4, we observe that balanced samples exhibit
strong semantic consistency between modalities, as indicated
by high balance scores, while imbalanced samples typically
display weak semantic connections or irrelevant information.

(d). Sarcasm.
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Figure 3: (a). and (b). Sensitivity to hyperparameters α and β on
the CREMA-D dataset. (c). and (d). Robust performance achieved
by using the CLIP pre-trained model as encoders.

Label: Neutral 

Balance Score: 0.4788

Of course Tesla has a
solar camera ba�ery to
document their buildout.

Label: Positive 

Balance Score: 0.9073

Congratulations to South
Greene freshman Taylor
Lamb for earning state
honors from the TSWA .

Good morning, church!
Grab a coffee from Elevate
Cafe and join us at 9 or 11
am.

Label: Neutral

Balance Score: 0.0641

Figure 4: Qualitative results of sample evaluation. We present some
representative samples selected from different segments (early, mid-
dle, and late) of the training sequence after evaluation under the
heuristic setting.

5 Conclusion
In this paper, we propose a novel multi-modal learning
method called Balance-aware Sequence Sampling (BSS). By
defining a multi-perspective measurer, we evaluate the bal-
ance score of each sample. Via this evaluation, we design a
heuristic and a learning-based scheduler to construct sample
sequences for the model at different training stages. As a re-
sult, BSS addresses modality imbalance through a balanced-
to-imbalanced learning strategy, thereby enhancing MML
performance. Furthermore, BSS can be integrated as a model-
independent plugin into most existing MML approaches. Ex-
tensive experiments on widely used datasets demonstrate the
superiority of BSS over SOTA baselines.
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